סוריא סידהנטה - ספר האסטרונומיה העתיק בעולם

עודכן ב: ינו 5

רבים מכירים את מעשיו של רָאוָונָה (Ravana), מלך השדים, השובה של סיטה (Sita) אשתו של ראמה, באפוס ההודי ראמאיאנה (Ramayana). עם זאת, פחות מכירים את הישגיו יוצאי הדופן של של חותנו המלך מאיה (King Maya). על פי האגדה, אל השמש ההינדי, סוריא (Surya), גילה בפני מאיה ידע מדוייק על הקוסמוס, ככל הנראה כדי לאפשר לאנשי כדור הארץ לסגוד לו יותר. סדרת חיבורים זו ידועה בשם סוריא סידהנטה (Surya Siddhanta) וזהו ספר האסטרונומיה הידוע העתיק ביותר שקיים והוא מדויק להפליא.

המלך מאיה

סוריא סידהנטה היא עדות מדהימה לחשיבה המתקדמת של ההודים הקדומים. בטקסט הזה ניתן למצוא את שורשי הטריגונומטריה, כמו גם המצאות מתמטיות חיוניות כמו כתיב מדעי ומערכת עשרונית. בנוסף, הטקסט מתאר את כוח הכבידה אלף שנה לפני שסר אייזק ניוטון פיתח את התיאוריה שלו בשנת 1687. הוא מסביר זמן כוכבים (sidereal revolutions) וכיצד כוכבי הלכת נעים מזרחה. יש בו חישובים מדוייקים של גודלם ומיקומם של כוכבי לכת מרוחקים, אורך השנה הטרופית וכמות הזמן שחלפה מאז הבריאה. ולבסוף, הוא גם מדבר על כיצד הזמן חולף בקצב שונה בנסיבות שונות, הזרעים של תורת היחסות.

"אובייקטים נופלים על כדור הארץ בגלל כוח משיכה של כדור הארץ. לכן כדור הארץ, כוכבי הלכת, קבוצות הכוכבים, הירח והשמש מוחזקים במסלולם, בגלל משיכה זו."

סוריא סידהנטה


הפרקים בסוריא סידהנטה

  • התנועות החזויות של כוכבי הלכת

  • מיקומים אמיתיים של כוכבי הלכת

  • כיוון, מקום וזמן

  • הירח וליקויי ירח

  • השמש וליקויי חמה

  • היטלי ליקויים

  • התקבצויות פלנטריות

  • זריחות ושקיעות

  • זריחות ושקיעות של הירח

  • היבטים מסוכנים של השמש והירח

  • קוסמוגוניה, גיאוגרפיה וממדי הבריאה

  • הגנומון

  • התנועות של הרקיע ופעילות אנושית

דוגמאות מהסוריא סידהנטה

  • האורך הממוצע של השנה הטרופית הוא כ-365.2421756 ימים, שהוא 1.4 שניות פחות מהערך המודרני שהוא 365.2421904 ימים.

  • האורך הממוצע של שנת כוכבים, אורך הזמן של הקפת כדור הארץ את השמש, 365.2563627 ימים, שזה כמעט זהה לערך המודרני של 365.25636305 ימים.

  • כדור הארץ הוא עגול וקבוע במקומו והשמש מקיפה אותו (המודל הגאוצנטרי)

  • הקוטר של כדור הארץ הוא 12,874 ק"מ, שגיאה של פחות מ-1% מהקוטר המקובל כיום של 12,742 ק"מ.

  • הקוטר של הירח הוא 3862 ק"מ, שגיאה של פחות מ-1% מהקוטר המקובל כיום של 3474 ק"מ.

  • הקוטר של חמה הוא 4840 ק"מ, שגיאה של פחות מ-1% מהקוטר המקובל כיום של 4879 ק"מ.

  • הקוטר של שבתאי הוא כ-118,901 ק"מ, שגיאה של פחות מ-1% מהקוטר המקובל כיום של 116,460 ק"מ.

  • הקוטר של מאדים הוא כ-6070 ק"מ, שגיאה של פחות מ-11% מהקוטר המקובל כיום של 6779 ק"מ.

  • המרחק בין הירח לשמש הוא 415,211 ק"מ, כיום ידוע שהוא בטווח של 356,500–406,700 ק"מ.

  • הקוטר של נוגה הוא כ-6455 ק"מ ושל צדק 66987 ק"מ, כאן השגיאות גדולות, המידות המקובלות היום גדולות פי שתיים, 12,104 ק"מ ו-139,820 ק"מ.

השערות על מקור הסוריא סידהנטה

על פי אל-בירוני, איש האשכולות הפרסי מהמאה ה-11, טקסט בשם סוריא סידהנטה נכתב על ידי לאטה (Lāta). הפסוק השני של הפרק הראשון של הסוריא סידהנטה מייחס את המילים לשליח של אלוהות השמש מהמיתולוגיה ההינדית, סוריא (Surya), כפי שסיפר לאסורה (ישות מיתית) (Asura) בשם מאיה (Maya), בסוף תקופת הסטיה יוגה (Satya Yuga), שהיא העידן הראשון, תור הזהב של המיתולוגיה ההינדית, לפני שני מיליון שנה.


בספר שנקרא פאנקה סידהנטיקה (Panca siddhantika) שחובר במאה השישית על ידי ווארהמיהירה (Varāhamihira), מופיעים חמישה פרקים אסטרונומיים הנקראים: Paulīśa-siddhānta, Romaka-siddhānta, Vasiṣṭha-siddhānta, Paitāmaha-siddhānta, וSūrya-siddhānt, הטקסט תוארך לסביבות המאה ה-6 לפנה"ס על ידי מרקנדאיה וסריווסטאבה (Markandeya and Srivastava). עם זאת, רוב החוקרים מעריכים שהטקסט הוא מהתקופה שבין המאה ה-4 למאה ה-5 לספירה.

לדברי ההסטוריון ג'ון באומן (John Bowman), הגרסא המוקדמת ביותר של הטקסט היא מהשנים 350-400 לספירה, בו יש התייחסות לשברים על בסיס סקסגסימלי ופונקציות טריגונומטריות, אך הטקסט היה מסמך חי ועודכן עד למאה ה-10. אחת העדויות לכך שהסוריא סידהנטה היתה טקסט חי היא עבודתו של אוטפאלה (Utpala), המלומד ההודי מימי הביניים, שמצטט עשרה פסוקים מגרסא של סוריא סידהנטה, אך עשרה פסוקים אלה אינם נמצאים בטקסט של כתבי היד ששרדו. לטענת ההסטוריון קים פלופקר (Kim Plofker), חלקים גדולים של הסוריא סידהנטה הקדומה יותר שולבו בטקסט הפאנקה סידהנטיקה (Panca siddhantika), וגירסה חדשה של הסוריא סידהנטה ככל הנראה עודכנה ונערכה סביב שנת 800 לספירה. חוקרים אחדים מתייחסים לפאנקה סידהנטיקה כסוריא סידהנטה הישנה ומתארכים אותה לשנת 505 לספירה.


השפעה וודית (Vedic)

סוריא סידהנטה הוא טקסט על אסטרונומיה ומעקב זמן, רעיון המופיע מוקדם יותר כתחום של הודאנגה (Vedanga) של התקופה הוודית. תחום הודאנגה עוסק במעקב זמן, ובעיקר בחיזוי ימים ושעות מבשרי טובות לטקסים וודיים. מקס מילר (Max Muller), מצטט קטעים של גרגה (Garga) ואחרים בעניין הטקסים הוודיים וקובע כי הטקסטים הוודים הקדומים מתארים ארבעה מדדי זמן - סוואנה, שמש, ירח וכוכבים (savana, solar, lunar and sidereal), וכן עשרים ושבע קונסטלציות כוכבים (Taras). לדברי המתמטיקאי דייוויד פינגרי (David Pingree), בטקסט ההינדי אתארבוודה (Atharvaveda), מסביבות שנת 1000 לפנה"ס, מופיע כבר הרעיון של עשרים ושמונה קונסטלציות ותנועת גופים שמימיים. חוקרים משערים כי יתכן וזה הגיע להודו ממסופוטמיה. על פי פינגרי, השערה זו לא הוכחה מכיוון שטרם נמצא כל לוח חימר כתוב או ממצא ממסופוטמיה הקדומה אשר תומך בתיאוריה הזאת.


לטענת פינגרי, ייתכן שההשפעה נדדה בכיוון ההפוך, ואז חזרה להודו לאחר הגעתו של דריווש הראשון (Darius) והכיבוש האחמני של עמק האינדוס סביב שנת 500 לפנה"ס. המתמטיקה והמכשירים למעקב אחר זמן המוזכרים בטקסטים העתיקים האלה בסנסקריט, כמו שעון המים, יתכן שהגיע להודו ממסופוטמיה, מציע פינגרי. עם זאת, חוקר בשם יוקיו אוהאשי (Yukio Ohashi) לא מסכים עם הצעת פינגרי ומציע במקום זאת שמעקב הזמן הוודי, לחיזוי זמנים מתאימים לטקסים, כנראה החל הרבה יותר מוקדם וההשפעה נדדה מהודו למסופוטמיה. אוהאשי קובע כי לא נכון להניח שמספר הימים בשנה שווה ל-365 בשנה הינדית וגם בשנה המצרית-פרסית. יתרה מזאת, מוסיף אוהאשי, הנוסחה לחישוב זמן המסופוטמית שונה מהנוסחה ההודית, כל נוסחה יכולה לעבוד רק על קו הרוחב שבה נכתבה, יהיו שגיאות משמעותיות בחיזוי זמן ולוח השנה בקו רוחב אחר.


ההסטוריונית קים פלופקר (Kim Plofker) קובעת כי בעוד שהנדידה של הרעיונות למעקב אחרי זמן הגיוני לשני הכיוונים, יתכן שבכל זאת הם התפתחו בכל אחד מהמקומות באופן עצמאי, מכיוון שהמילים המשותפות, שניתן למצוא בדרך כלל כאשר רעיונות נודדים, נעדרות בשני הצדדים.


השפעה יוונית

משערים כי הקשרים בין המלומדים ההודים הקדומים ליוון ההלניסטית, דרך הממלכה ההודית-יוונית (Indo-Greek Kingdom), לאחר פלישת אלכסנדר הגדול להודו, בפרט ביחס לעבודתו של היפרכוס (Hipparchus), במאה השנייה לפנה"ס, מסבירים כמה קווי דמיון בין הסוריא סידהנטה לאסטרונומיה היוונית בתקופה ההלניסטית. לדוגמה, בסוריא סידהנטה מופיעה טבלת פונקציות של סינוס המקבילה לטבלת המיתרים של היפרכוס, אם כי החישובים ההודים מדויקים ומפורטים יותר. לדברי אלן קרומר (Alan Cromer), חילופי הידע עם היוונים עשויים היו להתרחש בערך בשנת 100 לפנה"ס. ההודים אימצו את מערכת היפרכוס, על פי קרומר, והיא נותרה אותה מערכת פשוטה מזו שיצר תלמי (Ptolemy) במאה השנייה.


השפעתם של רעיונות יוונים על התיאוריות האסטרונומיות ההודיות בראשית ימי הביניים, ובמיוחד על סמלי גלגל המזלות (אסטרולוגיה), מקובלת על רוב החוקרים. על פי האסטרופיזיקאי ההודי ג'ייאנט נרליקאר (Jayant Narlikar), בספרות הוודית חסרים האסטרולוגיה, הרעיון של תשעה כוכבי לכת וכל תיאוריה על כך שכוכבים או קונסטלציות עשויים להשפיע על גורלו של האדם. על פי נרליקאר, אחד מכתבי היד של סוריא סידהנטה מזכיר את הדווה סוריא (Deva Surya) אומר לאסורה מאיה (asura Maya) לנסוע לרומא העתיקה, המייצגת את העולם היווני-רומי, שם סוריא יקבל ידע אסטרונומי מ"יוונה" (Yavana), שהוא המונח בסנסקריט לדוברי יוונית. (הקשר לעברית פה ברור)

"סע לרומא, העיר שלך, שם, בגלל קללת ברהמה (Brahma), אני אגלה לך את הידע הזה במסווה של יוונה."

תחום האסטרולוגיה התפתח ככל הנראה במאות שלאחר הגעת האסטרולוגיה היוונית עם אלכסנדר מוקדון, סימני גלגל המזלות שלהם היו כמעט זהים.


על פי פינגרי, בכתובות במערה בנאסיק (Nasik), מהמאה ה-2 לספירה, מוזכרים שמש, ירח וחמישה כוכבי לכת באותו הסדר שנמצא בבבל, אולם "אין שום רמז לכך שההודים למדו שיטה לחישוב מיקומים פלנטריים באותה תקופה". במאה השנייה לספירה תירגם חוקר בשם יוונסווארה (Yavanesvara) טקסט אסטרולוגי יווני, ואדם אלמוני אחר תירגם טקסט יווני שני לסנסקריט. לאחר מכן החלה ההתפשטות של רעיונות יוונים ובבלים על אסטרונומיה ואסטרולוגיה בהודו.

לדברי המתמטיקאי והיסטוריון ג'ון רוש (John Roche), השיטות האסטרונומיות והמתמטיות שפותחו על ידי היוונים קישרו קשתות למיתרים של טריגונומטריה ספירית. האסטרונומים המתמטיים ההודים, בטקסטים שלהם כמו הסוריא סידהנטה פיתחו מידות לינאריות אחרות של זוויות, עשו את החישובים שלהם בצורה שונה, "הציגו את ה"וורסינוס" (Versine), שהוא ההפרש בין הרדיוס לקוסינוס, וגילו זהויות טריגונומטריות שונות". למשל "היכן שאימצו היוונים 60 יחידות יחסיות לרדיוס ו-360 להיקף", ההודים בחרו 3,438 יחידות ו-60x360 עבור היקף ובכך חישבו את "היחס בין היקף לקוטר [pi, π] בערך של 3.1414".


מסורת האסטרונומיה ההלניסטית הסתיימה במערב לאחר שלהי העת העתיקה. לדברי קרומר, הסוריא סידהנטה וטקסטים הודים אחרים משקפים את המצב הפרימיטיבי של המדע היווני, ובכל זאת הם מילאו חלק חשוב בתולדות המדע, באמצעות תרגומם לערבית והמרצת המדע הערבי. על פי מחקר שערך דניס דיוק (Dennis Duke) שמשווה בין מודלים יוונים למודלים הודים, המבוססים על כתבי היד ההודים העתיקים ביותר כמו הסוריא סידהנטה שבהם מודלים המתוארים במלואם, סביר מאוד שההשפעה היוונית על האסטרונומיה ההודית היתה טרום תלמית.


הסוריא סידהנטה היה אחד משני הספרים בסנסקריט שתורגמו לערבית במחצית המאוחרת של המאה השמינית בתקופת שלטונו של הח'ליף העבאסי אל-מנסור. על פי מוזאפאר איקבל (Muzaffar Iqbal), התרגום הזה וזה של אריאבהטה היו בעלי השפעה ניכרת על המחקר הגיאוגרפי, האסטרונומי והמדעי האסלאמי..


אם נניח לרגע בצד את האפשרות של השראה אלוהית, ונתרכז רק בידע שנמצא בסוריא סידהנטה, ולא משנה אם הוא נכתב לפני 2,000,000 שנה, 2500 שנה או 1500 שנה, אם נקח בחשבון שהמצאת הטלסקופ (שהיא בעיה היסטוריוגרפית לא פתורה), התרחשה, ע"פ התאוריה הנדיבה ביותר, במאה ה-13, קשה מאד להבין מהיכן הגיע ידע זה וכיצד הוא הצליח להיות כל כך מדוייק.